本文目录一览:
ala合酶是别名叫什么?
δ-氨基乙酰丙酸。
δ-氨基乙酰丙酸又称为δ-氨基酮戊酸,英文简写为δ-ALA。是血红素合成过程中的中间产物。由甘氨酸和琥珀酸辅酶A在γ-酮基-δ-氨基戊酸合成酶(ALA合成酶)的催化下,脱羧生成ALA,是正常代谢中间产物。
人体在铅中毒时,体内铅抑制δ-氨基酮戊酸脱水酶(δ-ALAD),使δ-氨基酮戊酸形成卟胆原(PBG)受到抑制,血中ALA增加,δ-ALA随尿排出,造成尿中δ-ALA含量也增高。
因此,尿δ-氨基-γ-酮戊酸是反应机体铅中毒的一个客观指标,其出现较早,且增高程度与血铅,尿铅浓度明显相关。尿δ-ALA正常值我国目前定为6mg/L。
扩展资料
血红素的合成过程:
1、δ-氨基-γ-酮戊酸(ALA)的生成:在线粒体内,甘氨酸和琥珀酰CoA在ALA合成酶催化下,缩合生成ALA。此反应需要磷酸吡哆醛作为辅酶,ALA合成酶是血红素合成的限速酶。
2、卟胆原的生成:ALA生成后扩散到胞浆,两分子ALA在ALA脱水酶作用下,脱水缩合生成一分子卟胆原(PBG)。
3、尿卟啉原Ⅲ及粪卟啉原Ⅲ的生成:在胞浆四分子卟胆原在卟胆原脱氨酶和尿卟啉原Ⅲ同合酶协同催化下,脱氨缩合成尿卟啉原Ⅲ,再经尿卟啉原脱羧酶作用生成粪卟啉原Ⅲ。
4、血红素的生成:粪卟啉原Ⅲ经扩散重新进入线粒体。在粪卟啉原氧化脱羧酶催化下,生成原卟啉原Ⅸ,再经氧化酶作用,生成原卟啉Ⅸ。后者和Fe卜在血红素合成酶催化下,生成血红素。血红素由线粒体转入胞浆与珠蛋白结合成血红蛋白。
参考资料来源:百度百科-δ-氨基乙酰丙酸
ALA(5-氨基乙酰丙酸)有什么用处?价格多少?
5-ALA是生物体的内源性物质,是动物血红素和植物叶绿素生物合成的前体物质,对动植物生长发育起到重要调节作用。
在化工,医药 ,化妆品,农业,饲料等领域有广泛的应用, 预判在未来3年左右,低含量的发酵液会在农业市场,迎来大的机会!
5一氨基乙酰丙酸在植物上多久用一次
五天。根据查询5-氨基乙酰丙酸官网可知,(5-ALA)是基因肥料类群中非常重要、非常突出的一种,在植物上需要五天使用一次,它能调动植物的多种基因的多种功能的一种基因肥料,农业上常用于增加光和效能、促进转色等。
什么中草药含5-氨基乙酰丙酸?
植物中没有!
5一氨基乙酰丙酸是一种化学品,分子式是C5H9N03。
5-ALA是四氢吡咯(四氢吡咯是构成血红素、细胞色素、维生素B12的物质)的前缀化合物,是生物体合成叶绿素、血红素、维生素B12等必不可少的物质。农业上常用于增加光和效能、促进转色等。国外研究主要集中在日本、美国等少数几个国家,主要是采用化学方法以及微生物发酵法合成5-ALA。化学合成方法的研究始于20世纪50年代,在20世纪90年代最为活跃,研究者就先后以马尿酸、琥珀酸、四氢糠胺及乙酰丙酸等为原料合成了5-ALA,但是大部分方法具有试剂价格高不易获取和毒性高、收率低、反应条件要求苛刻等缺点。
5-氨基乙酰丙酸有什么功效?(回答医疗和日化方面的功效)
口服玻尿酸能使胶原蛋白和弹性蛋白在水和环境中充分延展,形成致密的网状结构,从而缓解皮肤表层的皱纹,逐渐恢复紧致弹润。
早在20世纪80年代,口服玻尿酸美容产品就已风靡日本。2021年1月7日,国家卫生健康委发布正式公告,批准由华熙生物申报的透明质酸钠为新食品原料,使用范围为乳制品、饮料类、酒类、可可制品、巧克力、糖果、冷冻饮品等品类,拉开了我国口服玻尿酸的“食潮”序幕。
口服玻尿酸经人体消化后吸收,形成体内玻尿酸合成的前体,运送至皮肤真皮层,激发成纤维细胞,分泌出更多的自源性玻尿酸。玻尿酸是细胞外间质(EMC)的重要成分,在真皮层中具有维持优良的基质空间结构和水分平衡的能力,这不仅为成纤维细胞的增殖和分化提供了适宜场所。
了解更多相关信息,推荐咨询华熙生物。
光对叶绿素的破坏的原理
叶绿素的合成一定需要光照吗?
叶绿素分子的生物合成是非常复杂的过程。整个叶绿素的生物合成过程包括十余步酶促反应步骤。可以分为若干个阶段。
在叶绿素生物合成的第一阶段,谷氨酸首先被转变为氨基γ-酮戊酸,δ-氨基乙酰丙酸(5-aminolevulinicacid,ALA)。在这一反应过程中谷氨酸共价地结合到tRNA上形成中间产物(这也是tRNA被用于蛋白质合成以外的极少数小分子生物合成过程中的一例)。之后,两分子的ALA聚合成胆色素原(porphobilinogen,PBG)。PBG将最终形成叶绿素的吡咯环。下一阶段是4个分子的PBG聚合形成卟啉结构。这一阶段包括六步酶促反应,最终形成原卟啉Ⅸ(protoporphyrin IX)。
这里是一个叶绿素和血红素的生物合成的分支点。在此分支点之前,所有的反应步骤都是相同的,而之后的反应是向合成叶绿素进行或向合成血红素进行取决于何种金属离子被插人卟啉的中心。如果被插入的是镁,反应将向合成叶绿素进行;如果插入铁则反应向合成血红素进行。催化镁插入卟啉的中心的酶是镁螯合酶(chelatase)。
下一阶段是使丙酸(propionic acid)的一条侧链环化,形成叶绿素的第五个环(E环),生成原叶绿素酸酯(protochlorophyllide)。这一过程需利用NADPH还原D环的双键,在被子植物中催化这一过程的酶是原叶绿素酸酯氧还酶(protochlorophyllideoxidoreductase,POR),是一被光所驱动的反应。非放氧的光合菌则采用不同的酶催化这一步骤而不需要光的驱动。蓝细菌(cyanobacteria)、藻类、低等植物和裸子植物同时具有需光的POR途径和不需光的途径。在暗中生长的种子植物由于无法满足POR途径的需光条件因而无法合成叶绿素,结果形成黄化苗,黄化苗在光下会迅速地合成叶绿素,转变为绿色。叶绿素生物合成的最终步骤是将加上叶绿醇(phytol)的“尾巴”,这一步骤是由叶绿素合成酶催化完成的。
——武维华《植物生理学》第1版
?
许多环境条件影响叶绿素的生物合成,从而也影响叶色的深浅。
光是影响叶绿素形成的主要因素。从上述可知,单乙烯基原叶绿素酯经过光照后,才能顺利合成叶绿素,如果没有光照,一般就只能停留在这个步骤。形成叶绿素所要求的光照强度相对较低,可见光中各种波长的光照都能促使叶绿素形成。一般植物在黑暗中生长都不能合成叶绿素,叶子发黄。这种缺乏任何一个条件而阻止叶绿素形成,使叶子发黄的现象,称为黄化(etiolation)。光线过弱,不利于叶绿素的生物合成,所以,作物栽培密度过大,上部遮光过甚,植株下部叶片叶绿素分解速度大于合成速度,叶色变黄。
叶绿素的生物合成过程,绝大部分都有酶的参与。温度影响酶的活动,也就影响叶绿素的合成。一般来说,叶绿素形成的最低温度是2~4℃,最适温度是30℃上下,最高温度是40℃。秋天叶子变黄和早春寒潮过后水稻秧苗变白等现象,都与低温抑制叶绿素形成有关。
矿质元素对叶绿素形成也有很大的影响。植株缺乏氮、镁、铁、锰、铜、锌等元素时,就不能形成叶绿素,呈现缺绿病(chlorosis)。氮和镁都是组成叶绿素的元素,当然不能缺少。至于铁、锰、铜、锌等元素,它们可能是叶绿素形成过程中某些酶的活化剂,在叶绿素形成过程中起间接作用