爱建股份股票市场动态:影响因素、近期走势和未来展望

admin 11 0

影响因素

  • 宏观经济环境:爱建股份的业务受宏观经济环境的影响很大,尤其是房地产行业的发展。经济增长放缓或房地产市场下滑会对公司的业绩产生负面影响。
  • 行业竞争:爱建股份在工程建设行业面临着激烈的竞争,包括来自国内和国际公司的竞争。竞争对手的战略和定价策略会影响爱建股份的市场份额和利润率。
  • 政府政策:政府政策,例如投资政策和监管政策,会对爱建股份的运营产生影响。政府对基础设施建设的支持会对公司带来利好,而对房地产行业的严格监管则会对公司带来挑战。
  • 公司治理和财务状况:爱建股份的公司治理结构和财务状况会影响投资者的信心。良好的公司治理和健康的财务状况通常会导致公司股票价格的上涨。

近期走势

爱建股份在过去一年的股价走势呈现出小幅震荡上行的趋势。2023年以来,公司股票价格从年初的约6.5元/股上涨至目前的约7.5元/股,涨幅约15%。近期影响爱建股份股价走势的因素包括:房地产市场企稳回暖:随着政府出台一系列支持房地产市场的政策,房地产市场出现企稳回暖的迹象,这对爱建股份的业绩构成利好。基建投资增加:政府加大对基础设施建设的投资力度,为爱建股份带来了新的业务机会。收购扩张:爱建股份近年来通过收购扩张的方式不断扩大业务规模,这为公司带来了新的增长点。

未来展望

爱建

请教爱建股份停牌问题

我也有这只股,不知以后会怎样啊?去哪能看到他的最新消息???

求个股票短线的绝招,好用简单的。

一般而言,对于ROC指标中只要达到超买线一(参数值5-10)的个股,投资者要见利就跑;而对于能达到超买线二(参数值12-17)的个股,应相应地进行波段的高抛低吸。 而一旦个股能够摆脱这两条常态超买线,挑战第三条超买线三(参数值18-35),行情往往就会向狂热的极端行情演变 。 其中有六、七成个股会演绎为叠创新高的大黑马或独立牛股,我们发现具备以下特征的个股出现黑马的成功率较高:1.先于大盘启动,底部放量换手吸筹充分的,第一波ROC上攻至第三超买线的个股。 因为在大盘受政策利好止跌反弹时,主力持筹充分的个股往往走势强劲,而在这部分个股中,有75%的黑马出现概率。 2.上攻日换手率3.5%-6%,第一波上攻月升幅在25%以上。 股价回调后,仍能总体保持45度以上的攻击性角度。 一旦第一波峰ROC指标达到第三超买线,其未来走势往往十分出众,投资者自当乘中线回调时介入。 3.对于达到第三超买线的领涨股,一旦遇到主力的快速洗盘,投资者可果断介入。 其中ROC向上突破零线,进入强势区域,表示多方力量强盛,这是辅助中短线的买入信号。 4.股价在洗盘后启动第二波升浪时,中线20日或40日均线系统率先梳理完毕,并先于大盘呈多头排列。 对于这类有庄超跌股,第二波走势往往会呈现出“涨、涨、涨”,涨不停的超强趋势。 5.对于这类超强领涨股,投资者还要结合SAR停损指标、EXPMA向下死*、或上升45度线来进行操作,这也是其确保盈利的良策。 实战案例:爱建股份()在2002年1月23日,该股在6.22元一线呈V型尖底反转,其ROC指标在2月7日高达36.68,股价也创出新高。 直至3月13日的10.87元后,该股才出现中线回荡,股价也受阻快速洗盘。 6月7日其ROC指标上穿0轴,其对应的10日均线出现拐点向上,且价量配合良好。 随后该股再度启动第二波上攻浪,9元至9.3元一线成为该股绝佳的买入阻击点。 此后该股通过攻击性换手叠创新高,成为抢眼的独立牛股。 在超短线操作(次日套利)中,对目标个股次日的买入卖出价的测算是锁定利润的关键步骤,目前已知的测算方法中,比较有效的是利用5分钟、15分钟、30分钟以及60分钟K线中可信度比较高的技术指标,但由于超短线技术指标灵敏度太高,一般是当日完成变化,次日操作时机把握性不强,同时也正因为灵敏度太高,容易反复,出现误差。 如何在交易中处理股票风险并能充分获利呢———可确切提前把握股票整合能量的相对极限和瞬间价格规律,又能知道超前挂上挡卖单低档埋进卖单的操作。 以下是笔者在操作中总结的小技巧:[技术前提]买入个股一般在尾市,并且持仓出现浮盈(尤其适合年底年初的超跌反弹行情)。 第二日(周、月)上涨空间预测=收盘+*n第二日(周、月)下跌空间预测=收盘-*nn为变量,即(最高-最低)/2的倍数,上涨空间预测常见n为(2或3)。 下跌空间预测常见n为1。 [实战应用]2003年5月27日铜城集团(笔者在盘中买入,但为确保操作的可信度以收盘价位买入价位)开盘5.47,最高5.60,最低5.43,收盘5.59,预测次日相对高点。 第二日(周、月)上涨空间预测=5.59+(5.60-5.43)*2=5.93第二日(周、月)下跌空间预测=5.59-(5.60-5.43)=5.42次日开盘后9点31分操作:先挂上挡,5.93元卖单后等待成交。 当日实际开盘5.59,最高5.94元,最低5.51,收盘5.75,操作成功,二日内交易纯利润率5%(扣除手续费)。 2003年5月28日福日股份(笔者在盘中买入,但为确保操作的可信度以收盘价位买入价位),开盘6.78,最高6.90,最低6.74,收盘6.83,预测次日相对高点。 第二日(周、月)上涨空间预测=6.83+(6.90-6.74)*3或6.83+(6.90-6.74)*4=7.31或7.47(由于股评推荐变量为3或4为确保成功,以3挂单)第二日(周、月)下跌空间预测=6.83-(6.90-6.74)=6.67次日开盘后9点31分操作:先挂上挡,7.31元卖单后等待成交。 当日实际开盘6.82,最高7.51元,最低6.82 收盘7.44,操作成功,二日内交易纯利润率6%(扣除手续费)。 一周内操作两只股票纯利润率共计11%,满仓或半仓,根据投资者个人爱好及操作习惯而定。 以上是本人总结出来的一些简单心得,尚不完善,而且也存在一些缺陷,有兴趣的投资者可根据笔者介绍的方法作进一步的研究。 在大盘平衡市中,市场热点的持续性不佳,此时针对大盘与个股进行波段操作就显得尤为重要。 而小时图稳健、快捷的风格此时便会起到很大的作用。 实际上,经过多年的实战经验我们可以将60分钟小时图均线设置为55小时、110小时、26小时和8小时均线。 其中55小时线是主要代表趋势行情的均线;而110小时(一个半月趋势)、26小时(6-7个交易日市场成本)和8小时(2个交易日)均线则可辅助55小时均线来判研个股及大盘方向。 具体操作如下:1.8小时均线上穿26小时均线,26小时均线上穿55小时均线,形成三线金叉,是重要的中短线进场买入的讯号。 2.8小时均线、26小时均线、55小时均线和110小时均线呈多头排列时,为可靠的持仓、守仓讯号。 3.对于55小时均线趋势向上且温和放量,同时26小时均线有一定上升斜率的个股,往往可在股价回档至26小时均线或55小时均线附近时大胆吸纳。 4.8小时均线下穿26小时及55小时均线,且55小时均线出现向下的拐点时,需注意获利了结。 5.8小时均线、26小时均线及55小时均线若形成死叉,当坚决清仓出局观望。 6.如果个股的20日、40日、60日均线系统的买卖讯号,与小时图均线系统发出的买卖讯号相同,那么出入市的成功率就会大大提高。 实战举例:中信国安�该股在3月26日16.45元一线,55小时均线向下破位并出现均线拐点,形成明确的卖出讯号。 之后股价一度下探至12.95元,而此时乖离率变大,且底部出现巨量。 5月29日,在13.7元一线,该股小时图上的8小时均线、26小时均线、55小时均线发出金叉买入信号。 6月6日股价在14.05元时,55小时均线出现拐点向上,当日最低13.8元至次日高点15.3元已有10%的短线获利,且仍可中线守仓与庄共舞。 鉴于小时图均线攻防符合“不买最低、不卖最高”的实战波段操作原则,一旦运用成熟,自有机会体验“一买就涨、一卖就跌”的炒股乐趣。 在10点以后,股市进入多空双方搏杀阶段,除去开盘与收盘个半个小时,其余时间全为盘中交易,股价在盘中走势,无论是探底拉升、窄幅震荡,或冲高回落全部体现控盘主力的操作意图。 盘中运行状态一般有以下几种常见情况:基本运行形态1、低开高走。 盘中个股若探底拉升超过跌幅的1/2时,此时股价回调跌不下去,表示主力做多信心十足,可在昨日收盘价附近挂内盘跟进。 2、平开高走。 大市处于上升途中,个股若平开高走后回调不破开盘,股价重新向上,表示主力做多坚决,待第二波高点突破第一波高点时,投资者应加仓买进。 3、大市低位时,个股如形成W底,三重底,头肩底,圆弧底时,无论其高开低走,低开低走,只要盘中拉升突破颈线位,但此时突放巨量,则不宜追高,待其回调颈线不破颈线时,(挂单买进)其中低开低走行情,虽然个股仍在底部但毕竟仍属弱势,应待突破颈线时红盘报收,回调也不长阴破位时才可买进。 4、个股低位箱体走势,高开低走,平开平走,低开平走,向上突破时可以跟进,但若是高位箱体突破时,应注意风险(当日股价走势出现横盘,最好观望,以防主力振荡出货)但若出现放量向上突破时,尤其,高位箱体一年左右成交地量时,是高开或平开平走,时间有已超过1/2时,为卖点变成委买单,出现箱顶高点价位时,即可(外盘跟进),若低开平开,原则上仅看作弱势止跌回稳的行情,可以少量介入,搏其反弹,切勿大量跟进。 此种事例较多,例如2001年中期头部时,许多中价次新股都形成高位箱体,有少量差价。 5、大市下跌时,若个股低开低走,突破前一波低点,多是主力看淡行情,有其弱势或有实质性利空出台,低开低走,反弹无法超过开盘,多是主力离场观望,若再次下破第一波低点,则应(市价杀跌卖出)。 6、个股如形成三重顶,头肩顶,圆弧顶时,跌破颈线时应果断卖出,趁其跌破后股价拉回颈线处反弹无力时卖出。 7、升势中,若高开低走,二波反弹无法创出最高,此刻若放出大量,在二波反弹高位反转时卖出,主力利用高开吸引投资者追涨跟风借机放量,派发的惯用伎俩手法,可参考前期除权股的盘中走势。 8、大盘趋弱时,个股高开低走翻黑后,反弹无法翻红时,投资者宜在无法翻红时,获利了结,以免在弱势中高位被套。 9、个股箱体走势往下跌时,箱底卖出,无论高开平走,平开平走或低开低走,尤其在箱体呈现大幅震荡,一旦箱体低点支撑失守,显示主力已失去护盘能力,至少短线向淡,暗示一轮新的跌势开始,投资者应毫不犹豫斩仓出局。

什么是拟合指数?

拟合指数 Simulation Index/fit index/Agreement Index拟合是《计量经济学》研究的范畴,所谓拟合指数简单的说就是选择的变量与被解释变量之间的相关关系股票\基金拟合指数: 指数基金是一种拟合目标指数、跟踪目标指数变化为原则,实现与市场同步成长的基金品种。 指数基金的投资采取拟合目标指数收益率的投资策略,分散投资于目标指数的成分股,力求股票组合的收益率拟合该目标指数所代表的资本市场平均收益率。 操作简单透明度高 从理论上讲,指数基金的运作方法简单,只要根据每一种证券在指数中所占的比例购买相应比例的证券,长期持有就可。 其次,指数基金费用低廉。 由于指数基金采取持有策略,不用经常换股,交易成本远远低于积极管理的基金。 此外,指数基金的业绩透明度较高。 投资人看到指数型基金跟踪的目标基准指数涨了,就会知道自己投资的指数型基金今天净值大约能升多少。 所以很多机构投资人和一些看得清大势、看不准个股的个人投资者比较喜欢投资指数型基金,不必再有“赚了指数不赚钱”的苦恼。 有效规避非系统性风险 与其他基金相比,指数基金的优点首先在于能够有效规避非系统性风险,因而指数基金广泛地分散投资,任何单个股票的波动都不会对指数基金的整体表现构成影响,从而分散风险。 另一个方面,由于指数基金所钉住的指数一般都具有较长的历史可以追踪,在一定程度上指数基金的风险是可以预测的。 因此,从长期来看,指数基金投资业绩优于其他基金。 2006年,市场上的指数基金以平均125.87%的年累计净值增长率成为最赚钱的基金品种。 这种基金不会对某些特定的证券或行业投入过量资金。 它一般会保持全额投资而不进行市场投机。 关键因素拟合指数化投资方法的实证研究 指数化投资是一种试图完全复制某一证券价格指数或者按照证券价格指数编制原理构建投资组合而进行的证券投资。 按此种方式投资的基金称为指数基金,其收益水平目标是所基指数的变化幅度。 自20世纪90年代以来,美国华尔街上大多数股票基金管理人的业绩都低于同期市场指数的表现,这样,以复制市场指数走势为核心思想的指数基金在全球范围内迅速发展壮大起来,并对传统的证券投资思维形成巨大的冲击与挑战。 在美国,指数基金的收益超过65~80%的共同基金,因而越来越受到欢迎。 流入共同基金市场的新增资金中,流入指数基金的比例由1994年的2%增加到1999年的31%。 1999年末美国指数基金总资金量达到3380亿美元,占全美股票基金总量的8.37%。 最大的指数基金、也是全美最大的共同基金Vanguard S&P 500管理着1050亿美元的资金。 我国的指数化投资出现较晚,这主要是因为我国的证券市场还比较年轻,还在不断探索和发展,我国的投资者群体还不成熟,缺乏科学的投资观念,市场行为的监管还欠完善,庄家炒作等非市场行为对股指有较大影响。 由于这些原因的共同影响,我国股票指数常常与市场背离,不能反映市场的真实情况。 就指数化投资方法而言,市场上常用的方法主要是完全复制某一证券价格指数或者按照证券价格指数编制原理构建投资组合。 这种传统的指数化投资方法相对比较被动,在大盘正常运行的时候可以良好运作,但是当部分样本股出现异常的快速上扬或急速下跌时,将失去进一步盈利和及时止损的机会。 为了弥补这一不足,各种替代方法应运而生。 Francesco Corielli与Massimiliano Marcellino(2002)认为跟踪指数是要建立指数的替代投资组合(replica),这个替代投资组合包含的股票要远远少于指数所包含的股票,并且跟踪误差中不包含非经常性成份,他们运用动态因子提取方法建立指数替代投资组合,用蒙特.卡罗经验指数和EURO STOXX50指数进行了验证。 验证结果令人鼓舞,替代投资组合基本完成了跟踪曲线[7]。 吴冲锋(2000)运用未定因素含义法分析1998年7月8日至1999年3月29日期间上证30指数样本股,得出由6只股票的投资组合替代上证30指数的结论[6]。 从以上研究我们发现,指数化投资方法不一定非要按照证券价格指数编制原理构建投资组合,可以通过构建替代投资组合对指数进行跟踪。 在此基础上,笔者提出关键因素拟合指数化投资方法,该方法认为,股票指数由其样本股按照证券价格指数编制原理构成,它的走势体现了这些样本股的共同作用,但并不是每一只样本股对指数的贡献都一样,股票指数中存在关键性因素,这些关键因素对股指的影响体现在各自所代表的样本股的表现之上。 同样,也并不是每一种关键因素所代表的样本股对它的贡献都一样,关键因素中存在最具代表性的关键样本股,正是这些最具代表性的关键样本股对股票指数起着举足轻重的作用,我们只要抓住了它们就抓住了股票指数,换句话说,我们只要投资于这些关键因素拟合的组合就等于投资了这个股票指数了。 另外,同一关键因素中具有代表性的关键样本股之间具有可替代性,可以使对股票指数的投资更加灵活,又不会影响投资组合的指数化性质,在一定程度上弥补了传统方法的不足。 下面我们将以上证50指数为研究对象,对关键因素指数化投资方法进行实证研究。 论文的结构安排如下:首先,我们进行研究设计,确定研究的程序、模型、样本及数据;然后,我们对数据进行因子分析,提取出上证50指数的关键因素;在此基础上,我们将按关键因素构造出的投资组合与实际的上证50指数进行相关性检验和回归分析以验证该方法;最后得出结论。 研究设计 一、 研究程序与模型设计 第一步,我们要找出影响上证50指数走势的关键性因素。 我们以上证50指数成份股个股的日收益率为基础进行因子分析,提取出反映上证50指数走势的n个共同因子,这n个共同因子即代表了影响上证50指数走势的n个关键因素的。 构造多因素模型如下: Index50=A1*F1+A2*F2+……+An*Fn+ε 式中:Index50为上证50指数;Fn为第n个共同因子;An为第n个共同因子对上证50指数的贡献率;ε为残差。 在找出这n个关键因素之后,我们要进一步找出这n种关键性的共同因子所代表的样本股。 对应关系如下: F1~a1(stock11)+a2(stock12)+…… F2~b1(stock21)+b2(stock22)+…… ………………………………… Fn~n1(stockn1)+n2(stockn2)+…… 式中:Fn为第n个共同因子;stock为共同因子所代表的样本股;a、b……n为样本股对共同因子的贡献率,即因子负荷。 观察共同因子的因子负荷强弱,我们可以分析判断出各个共同因子所反映的关键因素,并对它们进行相应的解释。 第二步,为了证明我们找出的这n个关键因素是否真的能够反映上证50指数的走势。 我们用它们中最具代表性的一组样本股构造出一个投资组合Portfolio50,与上证50指数Index50进行比较,验证是否Portfolio50与Index50等价。 为此,我们找出对这n个关键因素最有代表性的i个样本股,按照其方差对总方差解释的贡献率所占比重作为权重构造投资组合如下: Portfolio50=w1*STOCK1+w2*STOCK2+……+wi*STOCKi 式中:Portfolio50为构造的投资组合的日收益率;STOCKi为参与构造投资组合的第i个最有代表性的样本股的日收益率;wi为第i只样本股的权重。 计算出投资组合Portfolio50的日收益率和上证50指数的日收益率Index50,在通过相关性检验之后,将Portfolio50与Index50进行线性回归分析。 构造回归模型如下: Portfolio50=a+b*(Index50)+ε 式中:Portfolio50为构造的投资组合的日收益率;Index50为上证50指数的日收益率;a为常数项;b为回归系数;ε为残差。 如果该模型经检验成立,并且a趋近于0,同时b趋近于1,那么Portfolio50≈Index50,即Portfolio50与Index50等价,说明我们找出的这n各关键性因素能够真实地反映上证50指数的走势,Portfolio50可以代替上证50指数进行指数化投资。 二、 模型变量计算 上证50指数成份股个股日收益率用相对收益率计算,假如碰到配股、送股、送现金红利的情况,则用下面的公式计算: 式中:rit为第i种股票的第t日收益率;Pt、Pt-1分别为t日和t-1日的收盘价;C为以t-1日为基准的t日每股现金红利;As为以t-1日为基准的t日每股配股比例;S为以t-1日为基准的t日每股配股价;Ad为以t-1日为基准的t日每股送股比例。 上证50指数日收益率Index50同样用相对收益率计算,公式如下: 式中:Rt为上证50指数的第t日收益率;Pt、Pt-1分别为上证50指数t日和t-1日的收盘价。 三、 研究样本选择 本文研究中所需的上证50指数收盘价、成份股个股的收盘价、现金红利等原始交易数据来源于上海万国股市测评咨询有限公司制作的“大智慧证券信息平台V5.00”。 因子分析过程中,样本数据时期为2002年12月03日至2004年03月18日,每只样本股包含309条数据记录。 由于各种原因引起暂时停牌而产生的缺失值采用相邻数据平均法填补。 考虑到个别新上市公司样本股上市日期太短,样本数据数量不充分,业绩容易出现非正常波动,而且公司内部各方面的运行机制还不够健全和完善,为使检验不受少部分数据干扰,将其剔出样本股,在关键因素确立之后再根据专业知识单独判断其属性。 剔出样本股共五只,分别为:白云机场()、华夏银行()、南方航空()、中信证券()和长江电力()。 综上,因子分析样本股中共纳入45只上证50指数样本股,每只含309条日收益率记录,共计309组,条日收益率记录。 相关性检验与回归分析过程中,由于上证50指数自2004年1月2日起正式发布,指数简称上证50,指数代码,基日为2003年12月31日。 到目前为止数据量太小,所以我们无法直接用它计算。 但是上海证券交易所为上证50的顺利推出,于2003年1月2日起发布上证50板块概念指数。 其编制方法与走势和上证50基本相同,只是所取的基数有所不同。 在此我们用上证50板块概念指数数据代替上证50指数数据进行计算。 计算的时间跨度为前面分析时期的子集区间2003年07月22日至2004年03月12日,同样,缺失值的处理方法采用相邻数据平均数填补法,共计155组数据。 因子分析 表1 KMO统计量和Bartlett’s球形检验表 Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .958 Bartletts Test of Sphericity Approx. Chi-Square 9857.426 df 990 Sig. .000 首先,我们对各样本股日收益率数据采用KMO统计量和Bartlett’s球形检验,以判断样本数据是否符合因子分析的前提条件。 可以看出,表格中检验变量间偏相关性的KMO统计量,数值为0.958,接近1,表明各变量间的相关程度无太大差异,数据非常适合做因子分析。 同时,Bartlett’s球形假设检验的结果也被拒绝,强烈认可了变量之间的相关性,说明各样本股日收益率之间存在共同信息,符合提取共同因子的前提条件。 见表1。 本文采用的因子提取方法为主成分分析法(Principal Components Analysis)。 考虑到共同因子的可解释性,在提取因子的过程中采用正交旋转,具体旋转方法为方差最大化正交旋转(Varimax)。 根据提取的主成分共同因子的累积贡献率达到约85%以上为标准,一共提取20个共同因子。 信息提取的充分性检验表(略)告诉我们,按照上诉共同因子提取标准,样本股信息的提取基本是充分的。 表2 共同因子所解释的方差百分比表 Factor F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 %of Variance 42.311 6.849 4.540 3.208 2.395 2.856 2.367 2.133 2.035 1.844 Cumulative% 42.311 49.160 53.700 56.908 59.764 62.158 64.525 66.658 68.693 70.537 Factor F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 %of Variance 1.728 1.674 1.553 1.491 1.410 1.324 1.286 1.261 1.201 1.154 Cumulative% 72.265 73.939 75.491 76.982 78.392 79.716 81.002 82.263 83.464 84.618 我们把共同因子所解释的方差百分比(表2)作为因子对指数所贡献的权重,相应的多因素模型如下: Index50=0.4231*F1+0.0685*F2+0.0454*F3+0.0321*F4+0.0286*F5+0.0239*F6+0.0237*F7+0.0213*F8+0.0204*F9+0.0184*F10+0.0173*F11+0.0167*F12+0.0155*F13+0.0149*F14+0.0141*F15+0.0132*F16+0.0129*F17+0.0126*F18+0.0120*F19+0.0115*F20+ε 经过方差最大化正交旋转之后,将因子和变量之间因子负荷大于0.4的变量提出来,再根据同一样本股对共同因子的贡献大小取相对较大的值。 我们得到以下20个共同因子所主要代表的样本股列表,见表3。 表4 共同因子代表样本股列表 F1 中国石化 F5 哈药集团 马钢股份 哈飞股份 上海石化 F6 四川长虹 宝钢股份 福建高速 中海发展 首创股份 安阳钢铁 F7 上海航空 中国联通 海南航空 招商银行 F8 国电电力 山东基建 华能国际 原水股份 申能股份 浦发银行 F9 爱建股份 F2 广电电子 F10 伊利股份 东方明珠 光明乳业 广电信息 F11 民生银行 清华同方 F12 东方集团 上海贝岭 F13 爱使股份 方正科技 F14 东风汽车 F3 金杯汽车 F15 华北制药 悦达投资 F16 北亚集团 上海汽车 F17 张江高科 F4 天津港 F18 内蒙华电 上港集箱 F19 广州控股 上海机场 F20 - - 各个共同因子与样本股的因子负荷对应关系如下: F1~0.84()+0.84()+0.83()+0.82()+0.65()+0.61()+0.61()+0.55()+0.53()+0.46()+0.45() F2~0.88()+0.86()+0.85()+0.78()+0.69()+0.49() F3~0.81()+0.75()+0.63() F4~0.76()+0.67()+0.46() F5~0.88()+0.85() F6~0.66()+0.49()+0.46() F7~0.72()+0.67() F8~0.56()+0.55()+0.52() F9~0.83() F10~0.75()+0.40() F11~0.80() F12~0.81() F13~0.81() F14~0.97() F15~0.80() F16~0.77() F17~0.78() F18~0.75() F19~0.52() F20~---------------- 观察共同因子代表样本股列表与因子负荷对应关系,我们可以分析判断出各个共同因子所反映的关键因素如下: F1对应的样本股分别为中国石化、马钢股份、上海石化、宝钢股份、中海发展、安阳钢铁、中国联通、招商银行、山东基建、原水股份、浦发银行,这些都是广大股民所熟知的经营业绩优秀,净资产收益率很高的大盘蓝筹股,其中也包含了几只银行股,可以说是大盘中的大盘,蓝筹中的蓝筹,我们可以定义因子F1为“大盘深蓝股”。 F2对应的样本股分别为广电电子、东方明珠、广电信息、清华同方、上海贝岭、方正科技,这几只股票是高科技行业的杰出代表,主营计算机、微电子和信息产业,具有高成长性,我们可以定义因子F2为“高科技成长股”。 F3对应的样本股分别为金杯汽车、悦达投资、上海汽车,属于典型的汽车类股票,随着近几年汽车行业的崛起,业绩呈现稳步增长,我们可以定义因子F3为“汽车蓝筹股”。 F4对应的样本股分别为天津港、上港集箱、上海机场,与水陆空港口物流和运输有密切关系,我们可以定义因子F4为“港口物流股”。 F5对应的样本股分别为哈药集团、哈飞股份,具有明显的地域色彩,触摸到东北老工业基地的发展脉搏,我们可以定义因子F5为“东北老工业股”。 F6对应的样本股分别为四川长虹、福建高速、首创股份,其中福建高速、首创股份主要是经营公益事业和基础设施,我们可以定义因子F6为“基础公益股”。 但四川长虹的主营是电视机、空调等家用电器产品,业绩彪炳,被归于此类可以算是因统计之外原因引起的一个例外。 F7对应的样本股分别为上海航空、海南航空,国内航空运输业的两只优质股票,我们可以定义因子F7为“航空运输股”。 F8对应的样本股分别为国电电力、华能国际、申能股份,显然代表电力能源,我们可以定义因子F8为“电力能源股”。 F9对应的样本股为爱建股份,是上证50成份股中的非银行类金融股,我们可以定义因子F9为“非银行金融股”。 F10对应的样本股分别为伊利股份、光明乳业,皆为乳品业龙头,乳业产品的消费与老百姓日常生活息息相关,其业绩从一定角度上也体现了老百姓生活的富裕程度,我们可以定义因子F10为“乳品消费股”。 F11对应的样本股为民生银行,银行类股票。 F12对应的样本股为东方集团,一只综合类股票,涉猎金融、电子商务、建材、通讯等领域。 F13对应的样本股为爱使股份,主营计算机硬件及网络设备。 F14对应的样本股为东风汽车,汽车行业股票。 F15对应的样本股为华北制药,医药化工产品的生产和销售。 F16对应的样本股为北亚集团,主营运输物流及贸易。 F17对应的样本股为张江高科,房地产类个股。 F18对应的样本股为内蒙华电,主营活力发电、供热。 F19对应的样本股为广州控股,从事能源、物流、基础设施等综合类股票。 这些因子所代表的个股具有很强的针对性,虽然有些个股可以归结为前面几种共同因子,但从统计学角度来说,应单独列出,以保证对原始信息的完整反映。 F20对应的样本股因子负荷均小于0.4,说明其可解释性很小,体现的样本股散乱,从专业的角度看没有分析价值,故此将它剔出。 对于白云机场()、华夏银行 ()、南方航空()、中信证券()和长江电力()这五只由于上市时间不长而被剔出的个股,我们可以运用专业知识将其归类,并在今后的分析中予以验证。 白云机场()主营空港物流,可归为F4;华夏银行()属于银行股,可归为F11;南方航空()主营航空运输业,可归为F7;中信证券()为非银行金融股,可归为F9和长江电力()主营电力能源,可归为F8。 综上所述,通过对上证50指数成份股个股的日收益率数据因子分析,我们提取出有实际意义的F1~F19这19个共同因子,代表了影响上证50指数走势的19个关键因素。 构造多因素模型如下: Index50=0.4231*F1+0.0685*F2+0.0454*F3+0.0321*F4+0.0286*F5+0.0239*F6+0.0237*F7+0.0213*F8+0.0204*F9+0.0184*F10+0.0173*F11+0.0167*F12+0.0155*F13+0.0149*F14+0.0141*F15+0.0132*F16+0.0129*F17+0.0126*F18+0.0120*F19 +ε 相关性检验与回归分析 我们将因子分析中提取的19种共同因子中有代表性的样本股加权组合构造出一个投资组合Portfolio50,每个样本股的权重就等于每种共同因子所解释的方差百分比在累积百分比之中所占的比重。 比如:共同因子F1的权重等于(42.311/83.464=0.5069)。 考虑到F1因子所代表的股票较多,且权重比例较大,故选入排名前四位的4只股票,每只股票权重取F1因子权重的四分之一,共计22只样本股。 构造投资组合如下: Portfolio50=0.1267*(()+()+()+())+0.0821*()+0.0544*()+0.0384*()+0.0342*()+0.0287*()+0.0284*()+0.0256*()+0.0244*()+0.0221*()+0.0207*()+0.0201*()+0.0186*()+0.0179*()+0.0169*()+0.0159*()+0.0154*()+0.0151*() Portfolio50与Index50相关性检验表(略)显示,Portfolio50与Index50的相关系数在0.01置信水平下为0.943,说明Portfolio50与Index50高度相关。 表4 回归模型与检验结果表 Model Sum of Squares df Mean Square F Sig. 1 Regression .025 1 .025 1238.863 .000 Residual .003 153 .000 Total .028 154 表5 回归系数与检验结果表 Model Unstandardized Coefficients Standardized Coefficients t Sig. Correlations B Std. Error Beta Zero-order Partial Part 1 (Constant) 7.235E-04 .000 2.004 .047 INDEX50 1.021 .029 .943 35.197 .000 .943 .943 .943 从回归模型与检验结果(表4)我们可以看出该回归模型具有明显的统计学意义。 从回归系数与检验结果(表5)我们可以看出该回归模型系数b具有明显的统计学意义,且b值为1.021。 对于常数项的检验虽然没有统计学意义,但这无关紧要,出于常识,我们一般都将其保留在方程中,a值为0.。 据此我们可以构建回归模型如下: Portfolio50=0.+1.021*(Index50) 式中:常数项a=0.,非常接近于0,回归系数b=1.021,也同样接近于1。 所以我们可以认为Portfolio50≈Index50。 最后,我们进行回归模型拟合效力评价分析(过程略)。 由拟合模型的拟合优度简报和Durbin-Watson统计量我们可以得出确定系数R2为0.89,校正的确定系数Adjusted R2为0.889,说明该模型拟合效果显著。 Durbin-Watson统计量为1.786,取值在2附近。 可见残差间没有明显的相关性。 为了进一步分析模型的正态性,即的残差ε是否服从正态分布,我们做出残差分布直方图和正态PP图(见图1、图2)。 可见,该模型残差基本服从正态分布。 图1 残差分布直方图 图2 残差的正态PP图 结论 根据以上实证研究,我们得出如下结论: 1.在2002年12月3日至2004年3月18日期间,上证50指数的50种样本股的收益率受到19种关键因素的影响。 这19种关键因素中最有代表性的是中国石化、广电电子等22只样本股。 从另外一个角度看,这22只样本股的总体走势基本上反映了上证50指数的50只样本股的走势。 2.影响上证50指数的关键因素具有很强的板块效应,企业性质、经营主业、地域特征和管理业绩相同或相近的股票走势高度相关,可归为同一关键因素。 但同时个股的表现也同样突出,几乎每个板块中都有个别股票表现与众不同,这些特立独行的个股由于经营、资本运作等众多原因,走出了自己的特色,成为了市场不可或缺的亮点,对指数有着重要的贡献。 3.从个股对上证50指数关键因素的影响来看,如果一个关键因素所代表的样本股的个数少,则说明这些样本股更加具有代表性。 相反,如果一个关键因素所代表的样本股的个数多,则说明这些样本股之间具有可替代性,也就是说,如果需要调整投资组合,就可以在代表多数样本股的因子中进行调整,这样不会影响投资组合的代表性。 4.如果要对上证50指数进行指数化投资,不需要投资于所有的50种样本股,只需要投资于19种关键因素中最有代表性的22只关键样本股即可,构造投资组合如下:Portfolio50=0.1267*(()+()+()+())+0.0821*()+0.0544*()+0.0384*()+0.0342*()+0.0287*()+0.0284*()+0.0256*()+0.0244*()+0.0221*()+0.0207*()+0.0201*()+0.0186*()+0.0179*()+0.0169*()+0.0159*()+0.0154*()+0.0151*()。 检验结果表明,这22种具有代表性的关键样本股构造的投资组合Portfolio50的收益率基本上反映了上证50指数Index50的收益率,并且两者的风险处在同一水平上,即可以用投资组合Portfolio50来替代上证50指数进行指数化投资。 另外,由于同一关键因素所代表的股票具有可替代性,使得投资组合Portfolio50的构造更加灵活,我们可以根据市场的具体情况对该投资组合Portfolio50进行调整,同时还不会影响它对指数的反映。 以上结论说明,我们从实证研究的角度验证了关键因素拟合指数化投资方法,即指数化投资不必完全复制股票指数,股票指数中存在关键因素,利用这些关键因素构造的投资组合可以拟合出相应的股票指数,用来进行指数化投资。 这种方法能够适用于多种指数,并且操作灵活积极,基金经理可以同时结合其他的分析工具,根据市场的具体情况对拟合的投资组合进行调整,从而达到最佳的投资绩效。

标签: 影响因素 近期走势和未来展望 爱建股份股票市场动态

抱歉,评论功能暂时关闭!