本文目录一览:
-
4、工业相机
怎样选择线阵相机和镜头
计算分辩率:幅宽除以最小检测精度得出每行需要的像素
选定相机:幅宽除以像素数得出实际检测精度
每秒运动速度长度除以精度得出每秒扫描行数
根据以上数值选定相机
镜头:sensor长度(像素宽度×像素数)×?物距?/幅宽
如幅宽为1600毫米、精度1毫米、运动速度22000mm/s
相机:1600/1=1600像素
最少2000像素,选定为2k相机
1600/2048=0.8实际精度
22000mm/0.8mm=27.5KHz
应选定相机为2048像素?28kHz相机
线阵相机和相阵相机区别
线阵相机: 它的传感器只有一行感光元素,因此使高扫描频率和高分辨率成为可能。线阵相机的典型应用领域是检测连续的材料,例如金属、塑料、纸和纤维等。被检测的物体通常匀速运动 , 利用一台或多台相机对其逐行连续扫描 , 以达到对其整个表面均匀检测。可以对其图象一行一行进行处理 , 或者对由多行组成的面阵图象进行处理。另外线阵相机非常适合测量场合,这要归功于传感器的高分辨率 , 它可以准确测量到微米。
1,线阵相机,机顾名思义是呈“线”状的。虽然也是二维图象,但极长,几K的长度,而宽度却只有几个象素的而已。一般上只在两种情况下使用这种相机:一、被测视野为细长的带状,多用于滚筒上检测的问题。二、需要极大的视野或极高的精度。
2,在第二种情况下(需要极大的视野或极高的精度),就需要用激发装置多次激发相机,进行多次拍照,再将所拍下的多幅“条”形图象,合并成一张巨大的图。因此,用线阵型相机,必须用可以支持线阵型相机的采集卡。
线阵型相机价格贵,而且在大的视野或高的精度检测情况下,其检测速度也慢--一般相机的图象是 400K~1M,而合并后的图象有几个M这么大,速度自然就慢了。慢功出细活嘛。由于以上这两个原因,线阵相机只用在极特殊的情况下。
面阵相机
相机像素是指这个相机总共有多少个感光晶片,通常用万个为单位表示,以矩阵排列,例如3百万像素、2百万像素、百万像素、40万像素。百万像素相机的像素矩阵为W*H=1000*1000.
相机分辨率,指一个像素表示实际物体的大小,用um*um表示。数值越小,分辨率越高.FOV(Field of View, 视场)是指相机实际拍摄的面积,以毫米×毫米表示。FOV是由像素多少和分辨率决定的。相同的相机,分辨率越大,它的FOV就越小。例如1K*1K的相机,分辨率为20um,则他的FOV=1K*20 × 1k*20=20mm ×20mm,如果用30um的分辨率,他的FOV=1K*30×1k*30=30mm×30mm。在图像中,表现图像细节不是由像素多少决定的,而是由分辨率决定的。分辨率是由选择的镜头焦距决定的,同一种相机,选用不同焦距的镜头,分辨率就不同。如果采用20um分辨率,对于1mm*0.5mm的零件,它总共占用像素1/0.02 ×0.5/0.02=50×25个像素,如果采用30um的分辨率,表示同一个元件,则有1/0.03×0.5/0.03=33×17个像素,显然20um的分辨率表现图像细节方面好过30um的分辨率 。
既然像素的多少不决定图像的分辨率(清晰度),那么大像素相机有何好处呢?答案只有一个:减少拍摄次数,提高测试速度。 1个是1百万像素,另1个是3百万像素,清晰度相同(分辨率均为20um),第1个相机的FOV是20mm×20mm=400平方mm,第二个相机的FOV是1200平方mm,拍摄同一个PCB,假设第1个相机要拍摄30个图像,第2个相机则只需拍摄10个图像就可以了。
对于面阵CCD来说,应用面较广,如面积、形状、尺寸、位置,甚至温度等的测量。面阵CCD的优点是可以获取二维图像信息,测量图像直观。缺点是像元总数多,而每行的像元数 一般较线阵少,帧幅率受到限制,而线阵CCD的优点是一维像元数可以做得很多,而总像元数角较面阵CCD相机少,而且像元尺寸比较灵活,帧幅数高,特别适用于一维动态目标的测量。以线阵CCD在线测量线径为例,就在不少论文中有所介绍,但在涉及到图像处理时都是基于理想的条件下,而从实际工程应用的角度来讲,线阵CCD图像处理算法还是相当复杂的。
由于生产技术的制约,单个面阵CCD的面积很难达到一般工业测量对视场的需求。线阵CCD 的优点是分辨力高,价格低廉,如TCD1501C型线阵CCD,光敏像元数目为5 000,像元尺寸为7 μm×7 μm×7 μm(相邻像元中心距)该线阵CCD一维成像长度35 mm,可满足大多数测量视场的要求,但要用线阵CCD获取二维图像,必须配以扫描运动,而且为了能确定图像每一像素点在被测件上的对应位置,还必须配以光栅等器件以记录线阵CCD每一扫描行的坐标。一般看来,这两方面的要求导致用线阵CCD获取图像有以下不足:图像获取时间长,测量效率低;由于扫描运动及相应的位置反馈环节的存在,增加了系统复杂性和成本;图像精度可能受扫描运动精度的影响而降低,最终影响测量精度。
即使如此,线阵CCD获取图像的方案在以下几方面仍有其特有的优势:线阵CCD加上扫描机构及位置反馈环节,其成本仍然大大低于同等面积、同等分辨率的面阵CCD;扫描行的坐标由光栅提供,高精度的光栅尺的示值精度可高于面阵CCD像元间距的制造精度,从这个意义上讲,线阵CCD获取的图像在扫描方向上的精度可高于面阵CCD图像;新近出现的线阵CCD 亚像元的拼接技术可将两个CCD芯片的像元在线阵的排列长度方向上用光学的方法使之相互错位1/2个像元,相当于将第二片CCD的所有像元依次插入第一片CCD的像元间隙中,间接“减小”线阵CCD像元尺寸,提高了CCD的分辨率,缓解了由于受工艺和材料影响而很难减小CCD像元尺寸的难题,在理论上可获得比面阵CCD更高的分辨率和精度。
?因此,线阵CCD加扫描运动获取图像的方案目前仍使用广泛,尤其是在要求视场大,图像分辨率高的情况下甚至不能用面阵CCD替代。但是,仅有高的分辨率还不能保证有高的图像识别精度,特别是线阵CCD获取的图像虽然分辨率高,但由于受扫描运动精度的影响,其图像较面阵CCD图像更具特殊性。因此,图像识别时不仅要充分利用分辨率高的优势,还必须从算法上克服扫描运动的影响,使机械传动的误差不致直接影响最终的图像识别精度。
线阵CCD图像的特点
由于CCD像元是有间隔的,不论面阵还是线阵CCD获取的图像外观虽然是致密的,但实质上都是离散图像,但面阵CCD像元在纵横两个方向间隔一致,其图像的离散度是一致的,而线阵CCD图像由于存在像元间距和扫描行距,像素点在两个坐标方向上的距离分别是像元间距和扫描行距,一般来说扫描行距受机械传动部分的限制,远大于像元间距。 线阵CCD获取二维图像,必须配以扫描运动,在此过程中,线阵CCD在电机驱动下水平前移,按照固定的时间间隔采集一行图像。从理论上讲,电机运动速度应该是匀速的;CCD采集图像的时间间隔主要取决于光积分时间,也应该是相等的,因此行距应该是相等的,但由于电机运动产生的振动、启停过程中速度的变化,特别是机械传部分的误差都会影响采集行距的一致性,同时,线阵CCD 自身光积分时间也会影响采集行距
工业相机分辨率有哪些
相机的分辨率是以纵横像素数相乘表示的,一般情况下,最高拍摄分辨率就近似于它的可用像素总数。比如6000×4000,也就是个大概为2400万像素相机的最大分辨率。8um/piexl这个是指像素尺寸,也就是说这个相机传感器的最小记录单元有8um大。这些都和被拍摄物体的实际尺寸是无关的,换算之后只是被拍摄物体在传感器上的成像尺寸。
Regem Marr 研祥金码旗下的R-3000系列读码器,能够快速、全方位的条码捕捉读取。内置丰富的IO接口,支持复杂现场需求。集成多组可控光源,实现光源分路独立控制,响应你的柔性化生产需求。多核并行处理,提高整体读取速度。即插即用快速安装,一步到位轻松设定。
研祥集团作为中国企业500强,持续运营30年。研祥集团全球49个分支机构,三个国家级创新平台,一直致力于技术创新引领行业发展,拥有超1100项授权专利,超1300项非专利核心技术。
工业相机
工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的选择不仅直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。
主要参数编辑播报
1.分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于数字相机一般是直接与光电传感器的像元数对应的,对于模拟相机则是取决于视频制式,PAL制为768*576,NTSC制为640*480,模拟相机已经逐步被数字相机代替,且分辨率已经达到6576*4384。
2.像素深度(PixelDepth):即每像素数据的位数,一般常用的是8Bit,对于数字相机机一般还会有10Bit、12Bit、14Bit等。
3.最大帧率(FrameRate)/行频(LineRate):相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机为每秒采集的行数(Lines/Sec.)。
4.曝光方式(Exposure)和快门速度(Shutter):对于线阵相机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;面阵相机有帧曝光、场曝光和滚动行曝光等几种常见方式,数字相机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速相机还可以更快。
5.像元尺寸(PixelSize):像元大小和像元数(分辨率)共同决定了相机靶面的大小。数字相机像元尺寸为3μm~10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。
6.光谱响应特性(SpectralRange):是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。[1]
7.接口类型:有CameraLink接口,以太网接口,1394接口、USB接口输出,目前最新的接口有CoaXPress接口。
线阵相机的原理和线阵相机为什么做黑白平衡
1,线阵相机,机顾名思义是呈“线”状的。虽然也是二维图象,但极长,几K的长度,而宽度却只有几个 象素的而已。
一般上只在两种情况下使用这种相机:一、被测视野为细长的带状。如 滚筒上检测的问题。就是“关心的目标物特征分布在直线上”。二、需要极大的视野或极高的精度。
2,在第二种情况下(需要极大的视野或极高的精度),就需要用激发装置多次激发相机,进行多次拍照, 再将所拍下的多幅“条”形图象,合并成一张巨大的图。因此,用线阵型相机,必须用可以支持线阵型相机 的采集卡。
记得EURESYS有这个功能,其软件包中有合并“条”形图象的函数。最大的好象可以合并出8M的图象来。
线阵型相机价格贵,而且在大的视野或高的精度检测情况下,其检测速度也慢--一般相机的图象是 400K~1M,而合并后的图象有几个M这么大,速度自然就慢了。慢功出细活嘛!由于以上这两个原因,线阵 相机只用在极特殊的情况下。
另外线阵摄像机就是line scan camera,顾名思义就是一行一行的扫描,area scan camera大都是1/3,1/2,2/3 inch大小的ccd sensor,而line scan camera大都为10mm,20mm,30mm长的条状ccd sensor,现在行频有20k,40k,60k,甚至是80k,每行的象素有1k,2k,4k,甚至是8k,这种摄像机大都用在幅面很大的检测设备上,比如印刷、玻璃、食品、烟草等等。 大多数的线阵摄像机都是黑白,也有彩色的,但非常贵,因为它不是面阵摄像机那样经过bayer转换或是一些色彩变换得到的彩色图像,而是纯正的3 ccd感光,3ccd位置不同,又存在空间校正的麻烦,所以彩色线阵ccd造价昂贵,而且用起来很繁琐。 线阵摄像机对光的要求也更高,均匀性要求必须非常好,而且经久耐用,最重要的一点是当使用行频速度非常高的ccd时,比如60k或80k时,要求光的亮度非常高,因为速度太快了。 另外就是编码起要做的比较好,否则图像会被拉伸。 说道使用线阵摄像机的项目,非常昂贵,好多项目是使用多台摄像机一起安装,2,4,8比较常见,如果是两面检测,那就再double一下吧,我所知道的线阵设备大都在100万人民币以上,如果4个摄像机加4个采集卡加相应的光源,就这些硬件的成本就不会少于20万(嘿嘿,劝大家多接一些这样的项目,绝对有的赚,一般的检测国内竞争还是挺激烈的,什么dvt,keyence,omron,ppt,simens,panasonic,etc.,能做线阵项目的国内很少)。 国际上比较知名的生产线阵摄像机的就这么几家,basler,delsa,delsa属于高端,basler属于中端,国内消费basler的东西还是相当有竞争力的。采集卡吗,好几家公司有,matrox,I2S,euresys。
线阵相机具体是什么
线阵相机,主要应用于工业、医疗、科研与安全领域的图象处理。 在机器视觉领域中,线阵相机是一类特殊的视觉机器。与面阵相机相比,它的传感器只有一行感光元素,因此使高扫描频率和高分辨率成为可能。线阵相机的典型应用领域是检测连续的材料,例如金属、塑料、纸和纤维等。被检测的物体通常匀速运动 , 利用一台或多台相机对其逐行连续扫描 , 以达到对其整个表面均匀检测。可以对其图象一行一行进行处理 , 或者对由多行组成的面阵图象进行处理。另外线阵相机非常适合测量场合,这要归功于传感器的高分辨率 , 它可以准确测量到微米。